Copied to
clipboard

?

G = C42.446D4order 128 = 27

79th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.446D4, C42.325C23, C4⋊C84C22, D4.6(C2×D4), Q8.6(C2×D4), C4○D4.30D4, (C4×D4)⋊84C22, (C2×C8).15C23, (C4×Q8)⋊80C22, C4.71(C22×D4), D4.2D413C2, C4⋊C4.381C23, C4⋊M4(2)⋊6C2, (C2×C4).244C24, Q8.D413C2, (C2×Q16)⋊16C22, (C2×SD16)⋊8C22, (C2×D8).54C22, C23.656(C2×D4), (C22×C4).424D4, (C2×Q8).38C23, C4.106(C4⋊D4), Q8⋊C418C22, (C2×D4).387C23, C23.38D47C2, C23.37D47C2, D4⋊C4.21C22, C22.79(C4⋊D4), (C2×C42).813C22, (C22×C4).974C23, C22.504(C22×D4), C2.13(D8⋊C22), C4.4D4.127C22, (C22×D4).339C22, (C2×M4(2)).51C22, (C22×Q8).272C22, C42⋊C2.313C22, (C4×C4○D4)⋊8C2, C4.154(C2×C4○D4), C2.62(C2×C4⋊D4), (C2×C4).1214(C2×D4), (C2×C4.4D4)⋊39C2, (C2×C8⋊C22).10C2, (C2×C8.C22)⋊15C2, (C2×C4).275(C4○D4), (C2×C4○D4).300C22, SmallGroup(128,1772)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.446D4
C1C2C4C2×C4C22×C4C2×C4○D4C4×C4○D4 — C42.446D4
C1C2C2×C4 — C42.446D4
C1C22C2×C42 — C42.446D4
C1C2C2C2×C4 — C42.446D4

Subgroups: 500 in 250 conjugacy classes, 100 normal (28 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×2], C4 [×2], C4 [×10], C22, C22 [×2], C22 [×16], C8 [×4], C2×C4 [×2], C2×C4 [×8], C2×C4 [×17], D4 [×2], D4 [×11], Q8 [×2], Q8 [×7], C23, C23 [×9], C42 [×2], C42 [×2], C42 [×3], C22⋊C4 [×11], C4⋊C4 [×2], C4⋊C4 [×2], C2×C8 [×4], M4(2) [×4], D8 [×4], SD16 [×8], Q16 [×4], C22×C4, C22×C4 [×2], C22×C4 [×4], C2×D4, C2×D4 [×2], C2×D4 [×6], C2×Q8, C2×Q8 [×2], C2×Q8 [×5], C4○D4 [×4], C4○D4 [×2], C24, D4⋊C4 [×4], Q8⋊C4 [×4], C4⋊C8 [×4], C2×C42, C2×C42, C2×C22⋊C4 [×2], C42⋊C2, C42⋊C2, C4×D4 [×2], C4×D4 [×2], C4×Q8 [×2], C4.4D4 [×4], C4.4D4 [×2], C2×M4(2) [×2], C2×D8 [×2], C2×SD16 [×4], C2×Q16 [×2], C8⋊C22 [×4], C8.C22 [×4], C22×D4, C22×Q8, C2×C4○D4, C23.37D4, C23.38D4, C4⋊M4(2), D4.2D4 [×4], Q8.D4 [×4], C4×C4○D4, C2×C4.4D4, C2×C8⋊C22, C2×C8.C22, C42.446D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×2], C24, C4⋊D4 [×4], C22×D4 [×2], C2×C4○D4, C2×C4⋊D4, D8⋊C22 [×2], C42.446D4

Generators and relations
 G = < a,b,c,d | a4=b4=d2=1, c4=b2, ab=ba, cac-1=dad=a-1b2, cbc-1=dbd=b-1, dcd=b2c3 >

Smallest permutation representation
On 32 points
Generators in S32
(1 30 19 14)(2 11 20 27)(3 32 21 16)(4 13 22 29)(5 26 23 10)(6 15 24 31)(7 28 17 12)(8 9 18 25)
(1 17 5 21)(2 22 6 18)(3 19 7 23)(4 24 8 20)(9 27 13 31)(10 32 14 28)(11 29 15 25)(12 26 16 30)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 8)(3 7)(4 6)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 32)(17 21)(18 20)(22 24)

G:=sub<Sym(32)| (1,30,19,14)(2,11,20,27)(3,32,21,16)(4,13,22,29)(5,26,23,10)(6,15,24,31)(7,28,17,12)(8,9,18,25), (1,17,5,21)(2,22,6,18)(3,19,7,23)(4,24,8,20)(9,27,13,31)(10,32,14,28)(11,29,15,25)(12,26,16,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,32)(17,21)(18,20)(22,24)>;

G:=Group( (1,30,19,14)(2,11,20,27)(3,32,21,16)(4,13,22,29)(5,26,23,10)(6,15,24,31)(7,28,17,12)(8,9,18,25), (1,17,5,21)(2,22,6,18)(3,19,7,23)(4,24,8,20)(9,27,13,31)(10,32,14,28)(11,29,15,25)(12,26,16,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,32)(17,21)(18,20)(22,24) );

G=PermutationGroup([(1,30,19,14),(2,11,20,27),(3,32,21,16),(4,13,22,29),(5,26,23,10),(6,15,24,31),(7,28,17,12),(8,9,18,25)], [(1,17,5,21),(2,22,6,18),(3,19,7,23),(4,24,8,20),(9,27,13,31),(10,32,14,28),(11,29,15,25),(12,26,16,30)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,8),(3,7),(4,6),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,32),(17,21),(18,20),(22,24)])

Matrix representation G ⊆ GL6(𝔽17)

040000
400000
004900
0041300
0001304
00413130
,
1600000
0160000
0011500
0011600
0001601
00116160
,
0160000
100000
0010015
0000116
0000016
00116016
,
100000
0160000
001000
0011600
000001
000010

G:=sub<GL(6,GF(17))| [0,4,0,0,0,0,4,0,0,0,0,0,0,0,4,4,0,4,0,0,9,13,13,13,0,0,0,0,0,13,0,0,0,0,4,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,1,0,0,15,16,16,16,0,0,0,0,0,16,0,0,0,0,1,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,16,0,0,0,1,0,0,0,0,15,16,16,16],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I···4P4Q4R8A8B8C8D
order12222222224···44···4448888
size11112244882···24···4888888

32 irreducible representations

dim111111111122224
type+++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D4D4C4○D4D8⋊C22
kernelC42.446D4C23.37D4C23.38D4C4⋊M4(2)D4.2D4Q8.D4C4×C4○D4C2×C4.4D4C2×C8⋊C22C2×C8.C22C42C22×C4C4○D4C2×C4C2
# reps111144111122444

In GAP, Magma, Sage, TeX

C_4^2._{446}D_4
% in TeX

G:=Group("C4^2.446D4");
// GroupNames label

G:=SmallGroup(128,1772);
// by ID

G=gap.SmallGroup(128,1772);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,568,758,2019,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=b^2,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^2,c*b*c^-1=d*b*d=b^-1,d*c*d=b^2*c^3>;
// generators/relations

׿
×
𝔽